Applying Prediction Techniques to Phoneme-based AAC Systems

نویسندگان

  • Ha Trinh
  • Annalu Waller
  • Keith Vertanen
  • Per Ola Kristensson
  • Vicki L. Hanson
چکیده

It is well documented that people with severe speech and physical impairments (SSPI) often experience literacy difficulties, which hinder them from effectively using orthographicbased AAC systems for communication. To address this problem, phoneme-based AAC systems have been proposed, which enable users to access a set of spoken phonemes and combine phonemes into speech output. In this paper we investigate how prediction techniques can be applied to improve user performance of such systems. We have developed a phoneme-based prediction system, which supports single phoneme prediction and phoneme-based word prediction using statistical language models generated using a crowdsourced AAC-like corpus. We incorporated our prediction system into a hypothetical 12-key reduced phoneme keyboard. A computational experiment showed that our prediction system led to 56.3% average keystroke savings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM

Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...

متن کامل

Feature Frame Stacking in RNN-Based Tandem ASR Systems - Learned vs. Predefined Context

As phoneme recognition is known to profit from techniques that consider contextual information, neural networks applied in Tandem automatic speech recognition (ASR) systems usually employ some form of context modeling. While approaches based on multi-layer perceptrons or recurrent neural networks (RNN) are able to model a predefined amount of context by simultaneously processing a stacked seque...

متن کامل

Using Context-based Statistical Models to Promote the Quality of Voice Conversion Systems

This article aims to examine methods of optimizing GMM-based voice conversion systems performance in which GMM method is introduced as the basic method for improvement of voice conversion systems performance. In the current methods, due to using a single conversion function to convert all speech units and subsequent spectral smoothing arising from statistical averaging, we will observe quality ...

متن کامل

Augmentative and Alternative Communication systems for the motor disabled

This chapter discusses Augmentative and Alternative Communication (AAC) for individuals with motor disabilities. Motor disabilities do not only affect movement, but very often also affect speech. In these cases where voice is very weak, speech is unintelligible, or motor problems in the human speech production systems do not allow a person to speak, AAC is introduced. Aided and unaided communic...

متن کامل

Analysis of Duration Prediction Accuracy in HMM-Based Speech Synthesis

Appropriate phoneme durations are essential for high quality speech synthesis. In hidden Markov model-based text-tospeech (HMM-TTS), durations are typically modeled statistically using state duration probability distributions and duration prediction for unseen contexts. Use of rich context features enables synthesis without high-level linguistic knowledge. In this paper we analyze the accuracy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012